

International Centre for Radio Astronomy Research

Australian Government

The connection between mass, environment and slow rotation in simulations

Claudia Lagos (ICRAR)

www.clagos.com

CDPLagos

Joop Schaye, **Yannick Bahe**, Jesse van de Sande, David Barnes, Scott Kay, Timothy Davis, Claudio Dalla Vecchia

THE UNIVERSITY OF Western Australia

Kinematics as a morphological classification

Slow rotators

Emsellem et al. (2007): The stellar spin parameter

$$\lambda_{\rm R} = \frac{\sum_i L_i r_i |V_i|}{\sum_i L_i r_i \sqrt{V_i^2 + \sigma_i^2}},$$

ATLAS^{3D} velocity fields

Slow rotator ($\lambda_{R} = 0.04$), ± 40 km/s

Fast rotator ($\lambda_{R} = 0.66$), ± 220 km/s

Brough et al. (2017; SAMI)

Brough et al. (2017; SAMI) (see also Veale et al. 2017 and Greene et al. 2017)

Are the simulations **consistent with the lack** of environmental effect? If there are environmental effect where can they be more easily found? **How are slow rotators formed?**

The complementarity of EAGLE and C-EAGLE

Same code (model, numerical technique, time stepping, etc.)

- \rightarrow Improved hydrodynamics (Anarchy)
- \rightarrow Metal-dependent cooling
- \rightarrow Reionisation

CRAF

- \rightarrow Star formation
- \rightarrow Stellar recycling
- \rightarrow SNe feedback
- \rightarrow AGN feedback

(~700pc resolution, 1e6Msun)

At z=0: 44 clusters (>10¹⁴M_o) 16,431 galaxies >10^{9.5}M_o Perfect to study environmental/mass effects!

Building IFU cubes for simulated galaxies

Selecting slow rotators: the λ_R - ϵ view

No very thin galaxies: ISM modelling imposing a minimum scaleheight of ~1kpc

Very massive galaxies: overly rotating?

Lagos et al. (2017b; arXiv:171201398L)

Mass vs. environment

(Bahe+17, Barnes+17)

Mass, environment and quenching

Lagos et al. (2017b; arXiv:171201398L)

Observers: please go and measure FSR for satellite/centrals passive/active!

Effect of environment on slow rotators

ICRAR

Satellite galaxies in low mass halos need to have had morph transformation in order to be passive

Formation mechanisms of slow rotators

CRAR

ICRAR

Conclusions

(1) Combination of EAGLE+ C-EAGLE is very powerful.

The fraction of slow rotators vs. mass is relatively well reproduced, except for BCGs, which are overwhelmingly fast rotators.

(2) **Environment appears to be a secondary effect**, but most clearly appears when we isolate central galaxies and satellite/passive galaxies:

(3) Formation path of slow rotators is varied, but **there** is clear preference for dry major/minor mergers and low spin halos.

Lagos et al. (2017b; arXiv:171201398L)

The cumulative effect of mergers

The connection between halo and galaxy spin

Lagos et al. (2017b; arXiv:171201398L)

Schaye et al. (2015) and Crain et al. (2015)

Mass, environment and quenching

